Thermal study of mononuclear $\operatorname{Pd}($ II $)$ complexes of the type $\left[\mathbf{P d}(\mathbf{X})_{\mathbf{2}}(\mathbf{R t u})\left(\mathbf{P P h}_{3}\right)\right](\mathbf{X}=\mathbf{C l}, \mathbf{S C N} ; \mathbf{R t u}=N$-methylthiourea, N-phenylthiourea)

Francisco C. C. Arantes • Antonio C. Moro • Iolanda S. Klein •
Cristiana da Silva • Adelino V. G. Netto • Antonio E. Mauro •
Vânia M. Nogueira

CBRATEC7 Conference Special Issue
© Akadémiai Kiadó, Budapest, Hungary 2010

Abstract

The synthesis, spectroscopic characterization, and thermal analysis of the compounds $\left[\mathrm{Pd}(\mathrm{X})_{2}(\mathrm{mtu})\left(\mathrm{PPh}_{3}\right)\right]$ ($\mathrm{X}=\mathrm{Cl}^{-}(\mathbf{1}), \mathrm{SCN}^{-}(\mathbf{2}) ;$ mtu $=N$-methylthiourea; $\mathrm{PPh}_{3}=$ triphenylphosphine) and $\left[\mathrm{Pd}(\mathrm{X})_{2}(\right.$ phtu $\left.)\left(\mathrm{PPh}_{3}\right)\right]\left(\mathrm{X}=\mathrm{Cl}^{-}\right.$ (3), SCN^{-}(4); phtu $=N$-phenylthiourea) are described. The thermal decomposition of the compounds occurs in two, three, or four stages and the final decomposition products were identified as Pd^{0} by X-ray powder diffraction. The thermal stability order of the complexes is $\mathbf{4}>\mathbf{3}>\mathbf{2}>\mathbf{1}$.

Keywords Palladium (II) compounds • Thioureas • Pseudohalides • Thermal analysis

Introduction

Palladium(II) compounds have been used as pathways to new products in organic synthesis [1], as catalysts [1], antitumor drugs [2-4], and for the design of metallomesogens [5]. On the other hand, the chemistry of thiourea (tu) and substituted tu derivatives has attracted attention because of their potential use as reagents for the separation of metal ions [5] and in biological applications such as their employment as antitumor and antimycobacterial agents [2-4]. In addition to their uses, the ligands are of interest as they possess various donor sites: the sulfur atom of the $\mathrm{C}-\mathrm{S}$ group and the nitrogen atom of the NH or NHR moieties

[^0]($\mathrm{R}=$ alkyl or aryl groups). Thus, thiourea-type ligands represent a good choice for designing new structures sustained by coordinate [2, 6, 7] and hydrogen bonds [7]. In particular, complexes containing thiolates and phosphines (such as PPh_{3}) ligands have received considerable attention because of their prominent therapeutic activity in the rheumatoid arthritis treatment [8]. Another important S-based group is the thiocyanate ion (SCN^{-}) which possesses a rich coordination chemistry because of its ambidentate character [9]. It can coordinate through either the nitrogen or the sulfur atom, or both, giving rise to linkage isomers or polymers [10-12].

Extending our interest in the spectroscopic, biological evaluation, and thermogravimetric studies on complexes containing halides and pseudohalides as co-ligands [13-17], we wish to report the synthesis, characterization, and thermal behavior of the compounds $\left[\mathrm{PdCl}_{2}(\mathrm{mtu})\left(\mathrm{PPh}_{3}\right)\right]$ (1), $\left[\mathrm{Pd}(\mathrm{SCN})_{2}(\mathrm{mtu})\left(\mathrm{PPh}_{3}\right)\right]$ (2), $\left[\mathrm{PdCl}_{2}(\mathrm{phtu})\left(\mathrm{PPh}_{3}\right)\right]$ (3), and $\left[\mathrm{Pd}(\mathrm{SCN})_{2}(\mathrm{phtu})\left(\mathrm{PPh}_{3}\right)\right]$ (4).

Experimental

General comments

All the syntheses have been carried out at room temperature. All reagents were obtained from commercial suppliers. The starting complex $\left[\mathrm{PdCl}_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2}\right]$ was prepared as previously described [18].

Preparation of the complexes
$\left[\mathrm{PdCl}_{2}(\mathrm{mtu})\left(\mathrm{PPh}_{3}\right)\right](\mathbf{1})$ and $\left[\mathrm{PdCl}_{2}(\mathrm{phtu})\left(\mathrm{PPh}_{3}\right)\right]$ (3) were prepared by adding a mixture containing 0.38 mmol of the thiourea derivative (34 mg of mtu or 58 mg of phtu) and
triphenylphosphine (100 mg ; 0.38 mmol) dissolved in 15 mL of $\mathrm{CH}_{3} \mathrm{COCH}_{3} / \mathrm{CH}_{3} \mathrm{OH}$ (1:1) to an orange solution of $\left[\mathrm{PdCl}_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2}\right](100 \mathrm{mg} ; 0.38 \mathrm{mmol})$ in 15 mL of $\mathrm{CH}_{3} \mathrm{COCH}_{3}$. The mixtures were stirred magnetically for 1 h , the solvent was removed under reduced pressure and the yellow solids obtained were recrystallized from $\mathrm{CHCl}_{3} /$ $\mathrm{n}-\mathrm{C}_{5} \mathrm{H}_{12}$ and dried in vacuum. The yields were 80% for (1) and 85% for (3).

In the synthesis of $\left[\operatorname{Pd}(\mathrm{SCN})_{2}(\mathrm{mtu})\left(\mathrm{PPh}_{3}\right)\right]$ (2) and $\left[\mathrm{Pd}(\mathrm{SCN})_{2}(\mathrm{phtu})\left(\mathrm{PPh}_{3}\right)\right]$ (4), the KSCN salt $(35 \mathrm{mg}$; 0.36 mmol) was dissolved in 5 mL of $\mathrm{CH}_{3} \mathrm{OH}$, and then was added to a solution containing 0.18 mmol of the appropriate chloro-compounds (95 mg of $\mathbf{1}$ or 106 mg of $\mathbf{3}$) dissolved in 7 mL of $\mathrm{CH}_{3} \mathrm{COCH}_{3}$. The resulting solutions were stirred for 1 h , the solvent was removed under reduced pressure and the yellow (2) and orange (4) solids obtained were recrystallized from $\mathrm{CHCl}_{3} / \mathrm{n}-\mathrm{C}_{5} \mathrm{H}_{12}$ and dried in vacuum. The yields were 70% for (2) and 75% for (4).

Instrumentation

Melting points were determined on a Microquímica apparatus. Elemental analyses of carbon, nitrogen, and hydrogen were performed on a microanalyzer elemental analyzer CHN, model 2400 PerkinElmer. Infrared spectra (IR) were recorded on a Nicolet Impact 400 spectrophotometer in the spectral range $4000-400 \mathrm{~cm}^{-1}$ in KBr pellets. Simultaneous thermal analyses (TG-DTA) were carried out using a SDT 2960 system from TA Instruments, under dynamic flow of dry synthetic air $\left(100 \mathrm{~mL} \mathrm{~min}{ }^{-1}\right)$ at a heating rate of $20^{\circ} \mathrm{C} \min ^{-1}$ using α-alumina open crucibles for sample and reference. The X-ray powder diffractograms were obtained in a Siemens D5000 diffractometer, using CuK_{α} radiation ($\lambda=1.541 \AA$) and setting of 40 kV and 30 mA . The residues $\left(\mathrm{Pd}^{0}\right.$ and PdO$)$ were identified using ICDD bases [19, 20].

Results and discussion

In previous investigations, we have successfully developed a procedure for the synthesis of cis- $\left[\mathrm{PdCl}_{2}(\mathrm{tu})\left(\mathrm{PPh}_{3}\right)\right]$ (tu $=$ thiourea; $\mathrm{PPh}_{3}=$ triphenylphosphine) whose structure was determined by single-crystal X-ray diffraction [7]. The results derived from cis- $\left[\mathrm{PdCl}_{2}(\mathrm{tu})\left(\mathrm{PPh}_{3}\right)\right]$ have prompted us to investigate the reactions of $\left[\mathrm{PdCl}_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2}\right]$ with substituted thioureas and PPh_{3} ligands in order to generate compounds $\left[\mathrm{PdCl}_{2}(\mathrm{mtu})\left(\mathrm{PPh}_{3}\right)\right]$ (1) and $\left[\mathrm{PdCl}_{2}(\mathrm{phtu})\left(\mathrm{PPh}_{3}\right)\right]$ (3). The complexes $\left[\mathrm{Pd}(\mathrm{SCN})_{2}(\mathrm{mtu})\left(\mathrm{PPh}_{3}\right)\right]$ (2) and $\left[\mathrm{Pd}(\mathrm{SCN})_{2}(\mathrm{phtu})\left(\mathrm{PPh}_{3}\right)\right]$ (4) were obtained by reactions between the suitable chloro-derivative precursors and KSCN in the 1:2 molar ratio. In this context, the results of the elemental analyses and the thermogravimetric data
together with infrared spectroscopy data, confirmed the proposed formulae for the compounds $\mathbf{1 - 4}$. The results of the analyses and melting points are shown in Table 1.

Infrared spectra
In the IR spectra of $\mathbf{1 - 4}$, recorded as KBr pellets, some characteristic bands of coordinated PPh_{3} were observed at $3057-3067 \mathrm{~cm}^{-1}(\nu \mathrm{CH})$ and 1479-1491, 1433, $997 \mathrm{~cm}^{-1}$ (v ring). Other important band frequencies observed in the IR spectra of the complexes along with their assignments are presented in Table 2. Concerning the thiourea-type ligands, the band at $1538-1578 \mathrm{~cm}^{-1}(v \mathrm{CN})$ in IR spectra of $\mathbf{1}-\mathbf{4}$ was found shifted to a higher wavenumber when compared to that observed for the free ligands. These results are consistent with S-monodentate coordination of N-methylthiourea or N-phenylthiourea to $\mathrm{Pd}(\mathrm{II})$, as observed in other similar complexes [2, 6, 7]. Regarding to the SCN ligand, the presence of the terminal S-bonded thiocyanato group in 2 and 4 was evidenced by the $v \mathrm{CN}$ bands at $2106 \mathrm{~cm}^{-1}$ and a very sharp band at $2107 \mathrm{~cm}^{-1}$, respectively [10]. The analytical and IR results obtained for compounds $1-4$ suggest a square planar environment around the Pd atom whose coordination sites are occupied by one thiourea-type ligand, one triphenylphosphine molecule and two anionic X^{-} groups ($\mathrm{X}=\mathrm{Cl}^{-}, \mathrm{SCN}^{-}$). The cis configuration is attributed

Table 1 Elemental analyses and melting points for complexes $\left[\mathrm{PdCl}_{2}(\mathrm{mtu})\left(\mathrm{PPh}_{3}\right)\right](\mathbf{1}),\left[\mathrm{Pd}(\mathrm{SCN})_{2}(\mathrm{mtu})\left(\mathrm{PPh}_{3}\right)\right]$ (2), $\left[\mathrm{PdCl}_{2}(\mathrm{phtu})\right.$ $\left.\left(\mathrm{PPh}_{3}\right)\right](\mathbf{3})$, and $\left[\mathrm{Pd}(\mathrm{SCN})_{2}(\mathrm{phtu})\left(\mathrm{PPh}_{3}\right)\right]$ (4)

Complex	Melting point/ $/{ }^{\circ} \mathrm{C}$	Carbon/\%		Hydrogen/\%		Nitrogen/\%	
		Found	Calc.	Found	Calc.	Found	Calc.
1	104 (dec.)	45.19	45.34	3.88	4.00	5.07	5.29
2	111 (dec.)	45.90	45.95	3.49	3.69	9.22	9.75
3	131-132	50.26	50.73	3.74	3.92	4.61	4.73
4	150-151	50.45	50.90	3.86	3.65	8.74	8.80

Table 2 Selected IR data for $\left[\mathrm{PdCl}_{2}(\mathrm{mtu})\left(\mathrm{PPh}_{3}\right)\right](\mathbf{1}),\left[\mathrm{Pd}(\mathrm{SCN})_{2}\right.$ $\left.(\mathrm{mtu})\left(\mathrm{PPh}_{3}\right)\right](2),\left[\mathrm{PdCl}_{2}(\mathrm{phtu})\left(\mathrm{PPh}_{3}\right)\right](3)$ and $\left[\mathrm{Pd}(\mathrm{SCN})_{2}(\mathrm{phtu})\left(\mathrm{PPh}_{3}\right)\right]$ (4)

Complex	$\bar{v} / \mathrm{cm}^{-1}$			
	Rtu ($\mathrm{R}=$ methyl or phenyl)			SCN
	$\nu \mathrm{NH}$	$\delta \mathrm{NH}_{2}$	$v \mathrm{CN}$	$\nu \mathrm{CN}$
1	3400 sh, 3100 s	1618 s	1572 vs, 1298 w	-
2	3313 s, 3155 s	1623 s	1578 s, 1296 w	2106 vs
3	3352 w, 3165 vs	1620 vs	1548 w	-
4	3174 w	1617 s	1538 w	2107 vs

$s h$ shoulder, s strong, w weak, vs very strong are the abbreviations used for bands

Fig. 1 Suggested structures for compounds $\left[\mathrm{PdCl}_{2}(\mathrm{mtu})\left(\mathrm{PPh}_{3}\right)\right]$ (1), $\left[\operatorname{Pd}(\mathrm{SCN})_{2}(\mathrm{mtu})\left(\mathrm{PPh}_{3}\right)\right]$ (2), $\left[\mathrm{PdCl}_{2}(\mathrm{phtu})\left(\mathrm{PPh}_{3}\right)\right]$ (3), and $\left[\mathrm{Pd}(\mathrm{SCN})_{2}(\mathrm{phtu})\left(\mathrm{PPh}_{3}\right)\right](4)$

to these complexes on basis of the known X-ray structure of the cis-[$\left.\mathrm{PdCl}_{2}(\mathrm{tu})\left(\mathrm{PPh}_{3}\right)\right]$ (tu $=$ thiourea; $\mathrm{PPh}_{3}=$ triphenylphosphine) [7] (see Fig. 1).

Thermogravimetry

The TG and DTA curves for the mononuclear compounds 1-4 are shown in Fig. 2. Table 3 presents the thermal studies data of these complexes.

Compound $\left[\mathrm{PdCl}_{2}(\mathrm{mtu})\left(\mathrm{PPh}_{3}\right)\right]$ (1) started to decompose at $75{ }^{\circ} \mathrm{C}$. A further heating to $372{ }^{\circ} \mathrm{C}$ resulted in an abrupt mass loss of 70.14% which is accompanied by an exothermic signal at $327^{\circ} \mathrm{C}$. The next step is characterized by a progressive mass loss from 372 to $855{ }^{\circ} \mathrm{C}$ attributed to the decomposition of the carbonaceous matter and formation of PdO (ICDD 41-1107) [19], followed by the decomposition of PdO to Pd^{0} (ICDD 05-0681) [20] which is associated with an endothermic peak at $815^{\circ} \mathrm{C}$.

Compound $\left[\mathrm{Pd}(\mathrm{SCN})_{2}(\mathrm{mtu})\left(\mathrm{PPh}_{3}\right)\right]$ (2) started to degrade at higher temperature $\left(101{ }^{\circ} \mathrm{C}\right)$ than $\left[\mathrm{PdCl}_{2}(\mathrm{mtu})\right.$ $\left(\mathrm{PPh}_{3}\right)$] (1). Afterward, the elimination of the ligands together with uptake of O_{2} took place in one abrupt mass loss of 58.58% over range $101-327^{\circ} \mathrm{C}$. The second step $\left(327-470^{\circ} \mathrm{C}\right)$ is characterized by two consecutive and overlapped mass losses of 17.09% accompanied with an intense exothermic peak at $389{ }^{\circ} \mathrm{C}$ which is attributed to the oxidation of the organic matter. A progressive mass loss of 1.94% took place over the range $470-809^{\circ} \mathrm{C}$, affording PdO (ICDD 41-1107) as residue [19] which
further degraded to Pd^{0} (ICDD 05-0681) [20] in the last mass loss $(\Delta \mathrm{m}=-3.11 \%)$ at $809-855^{\circ} \mathrm{C}$, accompanied by an endothermic peak at $830{ }^{\circ} \mathrm{C}$.

Table 3 Thermal analysis data for compounds $\left[\mathrm{PdCl}_{2}(\mathrm{mtu})\left(\mathrm{PPh}_{3}\right)\right]$ (1), $\left[\mathrm{Pd}(\mathrm{SCN})_{2}(\mathrm{mtu})\left(\mathrm{PPh}_{3}\right)\right]$ (2), $\left[\mathrm{PdCl}_{2}(\mathrm{phtu})\left(\mathrm{PPh}_{3}\right)\right]$ (3), and $[\mathrm{Pd}$ $\left.(\mathrm{SCN})_{2}(\mathrm{phtu})\left(\mathrm{PPh}_{3}\right)\right](4)$

Complex	Step	$\Delta \mathrm{T} /{ }^{\circ} \mathrm{C}$	$\Delta \mathrm{m} / \%$	DTA peak $/{ }^{\circ} \mathrm{C}$	
				Endo	Exo
1	1	75-372	-70.14	-	327
	2	372-855	-8.85	815	-
	Residue		21.01		
2	1	101-327	-58.58	-	-
	2	327-470	-17.09	-	389
	3	470-809	-1.94	-	-
	4	809-855	-3.11	830	-
	Residue		19.28		
3	1	110-147	-5.45	138	-
	2	147-430	-64.35	281	-
	3	430-879	-11.99	830	505
4	Residue		18.21		
	1	136-333	-59.05	158	-
	2	333-538	-16.74	-	376, 458, 483
	3	538-787	-4.06	-	580
	4	787-864	-3.12	833	-
	Residue		17.03		

$\mathrm{m}_{\text {initial }}:(\mathbf{1}-\mathbf{4}) \cong 5.000 \mathrm{mg}$

Fig. 2 TG and DTA curves for complexes $\left[\mathrm{PdCl}_{2}(\mathrm{mtu})\left(\mathrm{PPh}_{3}\right)\right]$ (1), $\left[\mathrm{Pd}(\mathrm{SCN})_{2}(\mathrm{mtu})\left(\mathrm{PPh}_{3}\right)\right](2)$, $\left[\mathrm{PdCl}_{2}(\mathrm{phtu})\left(\mathrm{PPh}_{3}\right)\right](3)$, and $\left[\mathrm{Pd}(\mathrm{SCN})_{2}(\mathrm{phtu})\left(\mathrm{PPh}_{3}\right)\right](4)$

The TG curve showed that $\left[\mathrm{PdCl}_{2}(\mathrm{phtu})\left(\mathrm{PPh}_{3}\right)\right]$ (3) is thermally stable up to $110{ }^{\circ} \mathrm{C}$. A further heating to $147{ }^{\circ} \mathrm{C}$ caused a mass loss of 5.45% associated with a weak endothermic signal at $138^{\circ} \mathrm{C}$ which is ascribed to a melting process followed by decomposition. Over the temperature range of $147-430^{\circ} \mathrm{C}$, it is observed a mass loss of -64.35% accompanied by an endothermic peak at $281{ }^{\circ} \mathrm{C}$. The third stage of decomposition $\left(430-879{ }^{\circ} \mathrm{C}\right)$ is characterized by a progressive mass loss of -11.99% associated with an exothermic event at $505^{\circ} \mathrm{C}$ and an endothermic peak at $830^{\circ} \mathrm{C}$, attributed to the oxidation of organic matter with formation of PdO , followed by generation of Pd^{0} as final residue (ICDD 05-0681) [20].

Regarding the thermal behavior of $\left[\mathrm{Pd}(\mathrm{SCN})_{2}(\mathrm{phtu})\right.$ $\left.\left(\mathrm{PPh}_{3}\right)\right](4)$, the first stage $\left(136-333{ }^{\circ} \mathrm{C}\right)$ is characterized by a mass loss of 59.05% associated with an endothermic signal at $158{ }^{\circ} \mathrm{C}$, being attributed to a melting process followed by decomposition. A further heating to $538{ }^{\circ} \mathrm{C}$ resulted in a mass loss of 16.74%. This step is accompanied by exothermic peaks at 376,458 , and $483{ }^{\circ} \mathrm{C}$, ascribed to the oxidation of organic matter. The third step $\left(538-787^{\circ} \mathrm{C}\right)$ is characterized by a mass loss of 4.06% associated with a weak exothermic signal at $580^{\circ} \mathrm{C}$, yielding PdO as residue (ICDD 41-1107) [19]. The decomposition of PdO to Pd^{0} (ICDD 05-0681) [20] is observed in the last mass loss ($\Delta \mathrm{m}=-3.12 \%$) between 787 and $864{ }^{\circ} \mathrm{C}$, accompanied by an endothermic signal at $833^{\circ} \mathrm{C}$.

Taking into account the initial decomposition temperatures, the following thermal stability order can be established: $\mathbf{4 > 3}>\mathbf{2}>\mathbf{1}$. The thermal stability of the complexes 1-4 varies in the sequence of phtu $>\mathrm{mtu}$, probably due to packing effects. On the other hand, the thermal stability also varies according to the anionic groups, following the order $\mathrm{SCN}^{-}>\mathrm{Cl}^{-}$, as can be observed in the TG curves of $\left[\mathrm{PdX}_{2}(\mathrm{mtu})\left(\mathrm{PPh}_{3}\right)\right]\left\{\mathrm{X}=\mathrm{Cl}^{-}\right.$ (1); $\left.\mathrm{SCN}^{-}(\mathbf{2})\right\}$ and $\left[\mathrm{PdX}_{2}(\mathrm{phtu})\left(\mathrm{PPh}_{3}\right)\right]\left\{\mathrm{X}=\mathrm{Cl}^{-}(\mathbf{3})\right.$; $\left.\mathrm{SCN}^{-}(4)\right\}$. The fact that thiocyanato-compounds are more thermally stable than their respective chloro analogous agrees well with our earlier study [21], in which the highest thermal stability for thiocyanato-derivatives of Pd (II) was verified. On the other hand, we have also obtained experimental evidences on $\operatorname{Pd}(\mathrm{II})$ compounds which indicated the opposite order of thermal stability, i.e., $\mathrm{Cl}^{-}>\mathrm{SCN}^{-}$ [22-24]. Therefore, further studies are required in order to rationalize the influence of the anionic ligand on the thermal stability of palladium(II) compounds.

Conclusions

The results of this investigation showed that the mononuclear compounds $\left[\mathrm{PdX}_{2}(\mathrm{mtu})\left(\mathrm{PPh}_{3}\right)\right]\left(\mathrm{X}=\mathrm{Cl}^{-}(\mathbf{1}), \mathrm{SCN}^{-}\right.$
(2)) and $\left[\mathrm{PdX}_{2}(\mathrm{phtu})\left(\mathrm{PPh}_{3}\right)\right]\left(\mathrm{X}=\mathrm{Cl}^{-}\right.$(3), SCN^{-}(4)) were obtained in excellent yields. The IR data of $\mathbf{1 - 4}$ are consistent with monodentate coordination of the organic and inorganic groups to $\mathrm{Pd}(\mathrm{II})$ atom. The thermoanalytical results showed that the thermal stability of compounds $\mathbf{1 - 4}$ varies in the sequence $\mathbf{4 > 3}>\mathbf{2}>\mathbf{1}$. TG studies indicated increased thermal stability for $\left[\operatorname{Pd} X_{2}(\mathrm{~L})\left(\mathrm{PPh}_{3}\right)\right]$ complexes in the order $\mathrm{L}=$ phtu $>\mathrm{mtu}$ and $\mathrm{X}=\mathrm{SCN}^{-}>\mathrm{Cl}^{-}$.

Acknowledgements The authors thank the CNPq, CAPES, and FAPESP for financial support.

References

1. Caires ACF, Mauro AE, Moro AC, Legendre AO, Ananias SR. Synthesis of $\left[\operatorname{Pd}(\mathrm{dmba})\left(\mathrm{N}_{3}\right)\left(\mathrm{PPh}_{3}\right)\right]$ and its use in catalytic processes involving the reductive N -carbonylation of nitroarenes to carbamates and in the synthesis of urea derivatives. Quím Nova. 2006;29:750-4.
2. Moro AC, Mauro AE, Netto AVG, Ananias SR, Quilles MB, Carlos IZ, et al. Antitumor and antimycobacterial activities of cyclopalladated complexes: X-ray structure of $[\mathrm{Pd}(\mathrm{C} 2, \mathrm{~N}-\mathrm{dmba})$ $(\mathrm{Br})(\mathrm{tu})](\mathrm{dmba}=\mathrm{N}, \mathrm{N}$-dimethylbenzylamine, $\mathrm{tu}=$ thiourea $)$. Eur J Med Chem. 2009;44:4611-5.
3. de Souza RA, Stevanato A, Treu-Filho O, Netto AVG, Mauro AE, Castellano EE, Carlos IZ, Pavan FR, Leite CQF. Antimycobacterial and antitumor activities of Palladium(II) complexes containing isonicotinamide (isn): X-ray structure of trans$\left[\operatorname{Pd}\left(\mathrm{N}_{3}\right)_{2}(\text { isn })_{2}\right]$. Eur J Med Chem. 2010;45:4863-8.
4. Rocha FV, Barra CV, Netto AVG, Mauro AE, Carlos IZ, Frem RCG, Ananias SR, Quilles MB, Stevanato A, da Rocha MC. 3,5-Dimethyl-1-thiocarbamoylpyrazole and its Pd(II) complexes: synthesis, spectral studies and antitumor activity. Eur J Med Chem. 2010;45:1698-702.
5. Saccomando DJ, Black C, Cave GWV, Lyndon DP, Rourke JR. Chiral cyclopalladated liquid crystals from amino acids. J Organomet Chem. 2000;601:305-10.
6. Moloto MJ, Malik MA, O’Brien P, Motevalli M, Kolawole GA. Synthesis and characterization of some N-alkyl/aryl and N, N 'dialkyl/aryl thiourea cadmium(II) complexes: the single crystal X-ray structures of $\left[\mathrm{CdCl}_{2}\left(\mathrm{CS}\left(\mathrm{NH}_{2}\right) \mathrm{NHCH}_{3}\right)_{2}\right]_{n}$ and $\left[\mathrm{CdCl}_{2}(\mathrm{CS}\right.$ $\left.\left(\mathrm{NH}_{2}\right) \mathrm{NHCH}_{2} \mathrm{CH}_{3}\right)_{2}$]. Polyhedron. 2003;22:595-603.
7. Moro AC, Watanabe FW, Ananias SR, Mauro AE, Netto AVG, Lima APR, et al. Supramolecular assemblies of cis-palladium complexes dominated by $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ interactions. Inorg Chem Commun. 2006;9:493-6.
8. Barreiro E, Casas JS, Couce MD, Gato A, Sánchez A, Sordo J, et al. Synthesis, structural characterization, and antiinflammatory activity of triethylphosphinegold(I) sulfanylpropenoates of the type $\left[\left(\mathrm{AuPEt}_{3}\right)_{2} \mathrm{xspa}\right][\mathrm{H} 2 \mathrm{xspa}=3$-(aryl)-2-sulfanylpropenoic acid]: an $\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}$ cluster in the lattice of the complexes $\left[\left(\mathrm{AuPEt}_{3}\right)_{2}\right.$ xspa] $\cdot 3 \mathrm{H}_{2} \mathrm{O}$. Inorg Chem. 2008;47:6262-72.
9. Legendre AO, Mauro AE, Ferreira JG, Ananias SR, Santos RHA, Netto AVG. A 2D coordination polymer with brick-wall network topology based on the $\left[\mathrm{Cu}(\mathrm{NCS})_{2}(\mathrm{pn})\right]$ monomer. Inorg Chem Commun. 2007;10:815-20.
10. Netto AVG, Frem RCG, Mauro AE, de Almeida ET, Santana AM, de Souza J Jr, et al. Self-assembly of Pd(II) pyrazolyl complexes to 1-D hydrogen-bonded coordination polymers. Inorg Chim Acta. 2003;350:252-8.
11. Mauro AE, Santos RHA, Gambardella MTP, Francisco RHP. Synthesis and solid-state structural characterization of bis(thiocyanatemercury)tetracarbonyliron. Polyhedron. 1987;6:1273-7.
12. Mauro AE, Pulcinelli SH, Santos RHA, Gambardella MTP. Synthesis and structural studies of bis(1,10-phenanthrolinethiocyanatemercury)tetracarbonyliron. Polyhedron. 1992;11:799-803.
13. de Almeida ET, Mauro AE, Santana AM, Netto AVG, Carlos IZ. Activation of mice peritoneal macrophages by palladium(II) organometallic mononuclear compounds. Quím Nova. 2005;28: 405-8.
14. Mauro AE, Caires ACF, Santos RHA, Gambardella MTP. Cycloaddition reaction of the azido-bridged cyclometallated complex $\left[\mathrm{Pd}(\mathrm{dmba}) \mathrm{N}_{3}\right]_{2}$ with CS_{2}. Crystal and molecular structure of $\operatorname{di}(\mu, N, S-1,2,3,4$-thiatriazole-5-thiolate $) \operatorname{bis}[(N, N$-dimethylbenzyl-amine-C2, N)palladium(II)]. J Coord Chem. 1999;48:521-8.
15. Zukerman-Schpector J, Castellano EE, Mauro AE, Roveri MR. Di- μ-bromo-bis[(pyridine)(triphenylphosphine)copper(I)]. Acta Cryst. 1986;C42:302-3.
16. Netto AVG, Frem RCG, Mauro AE, Crespi MS, Zorel HE Jr. Synthesis, spectral and thermal studies on pyrazolate-bridged palladium(II) coordination polymers. J Therm Anal Calorim. 2007;87:789-92.
17. Moro AC, Mauro AE, Ananias SR, Stevanato A, Legendre AO. Mono- and dinuclear palladium(II) compounds containing N, S donor ligands: synthesis, characterization and thermal behavior. J Therm Anal Calorim. 2007;87:721-4.
18. Bego AM, Frem RCG, Netto AVG, Mauro AE, Ananias SR, Carlos IZ, da Rocha MC. Immunomodulatory effects of palladium(II) complexes of 1,2,4-triazole on murine peritoneal macrophage. J Braz Chem Soc. 2009;20:437-44.
19. International Center of Diffraction Data. Powder diffraction file: release, New Square. 1996, PDF no. 41-1107.
20. International Center of Diffraction Data. Powder diffraction file: release, New Square. 1999, PDF no. 05-0681.
21. de Lucca Neto VA, Mauro AE, Caires ACF, Ananias SR, de Almeida ET. Synthesis, characterization and thermal behavior of cyclopalladated compounds of the type $\left[\mathrm{Pd}\left\{\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}\right\}\right.$ -$(\mu-X)]_{2}(X=C l, N C O, S C N, C N)$. Polyhedron. 1998;18:413-7.
22. de Almeida ET, Santana AM, Netto AVG, Torres C, Mauro AE. Thermal study of cyclopalladated complexes of the type $\left[\mathrm{Pd}_{2}(\mathrm{dmba})_{2} \mathrm{X}_{2}(\right.$ bpe $\left.)\right] \quad\left(\mathrm{X}=\mathrm{NO}_{3}^{-}, \mathrm{Cl}^{-}, \mathrm{N}_{3}^{-}, \mathrm{NCO}^{-}, \mathrm{NCS}^{-} ;\right.$ bpe $=$ trans-1,2-bis(4-pyridyl)ethylene). J Therm Anal Calorim. 2005;82:361-4.
23. Netto AVG, Takahashi PM, Frem RCG, Mauro AE, Zorel HE Jr. Thermal decomposition of palladium(II) pyrazolyl complexes. Part I. J Anal Appl Pyrolysis. 2004;72:183-9.
24. Netto AVG, Santana AM, Mauro AE, Frem RCG, de Almeida ET, Crespi MS, Zorel HE Jr. Thermal decomposition of palladium(II) pyrazolyl complexes. Part II. J Therm Anal Calorim. 2005;79:339-42.

[^0]: F. C. C. Arantes - A. C. Moro - I. S. Klein - C. da Silva A. V. G. Netto (\triangle) • A. E. Mauro (\triangle) V. M. Nogueira Instituto de Química de Araraquara, UNESP-Univ Estadual Paulista, C.P. 355, Araraquara, SP 14801-970, Brazil
 e-mail: adelino@iq.unesp.br
 A. E. Mauro
 e-mail: mauro@iq.unesp.br

